Features

Supports the SensL ArrayC-30035-144P-PCB 12x12 array of 3mm SiPMs

Horizontal signal connectors located on the back, array located on the front

4-side tileable installation

Hybrid multiplexed readout

Four encoded position signals for event centroid calculations: X+, X-, Y+, Y-

12 row signals and 12 column signals

DC-coupled signal path

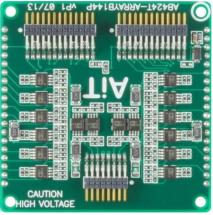
Low power consumption

Patented diode-coupled charge division readout, superior to traditional resistive readout

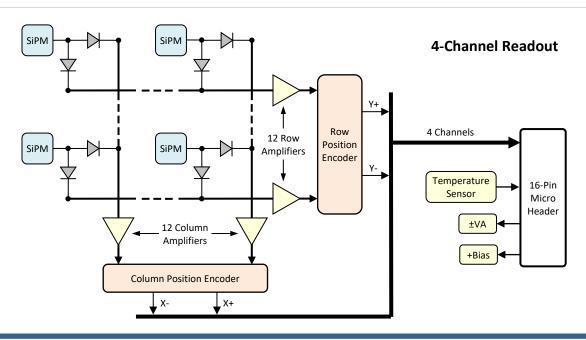
Improved spatial uniformity

Faster rise time

Reduced image noise


Precision temperature sensor

Four mounting holes for #2 hardware



SiPM array not included

Front view

Back view

4-Channel Readout Specifications

Position Signal Outputs

Encoding Charge division multiplexed to

4 output channels: X+, X-, Y+, Y-

Gain 750Ω transimpedance gain

Output voltage $0 \rightarrow -1V$ into 100Ω load

Output impedance 100Ω

Output current 50mA maximum

Temperature Sensor

Output voltage 500mV + 10mV per °C

Output current 10mAOutput impedance 100Ω Accuracy $\pm 0.5^{\circ}C$

Bias Voltage +29V typical (refer to SiPM data)

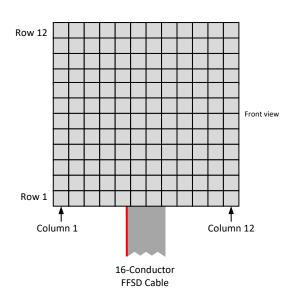
Voltage clamp 47V Zener diode

500mW maximum

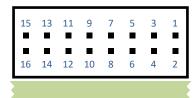
Amplifier Voltage (\pm VA) $\pm 2.8V \rightarrow \pm 5.5V$ DC maximum

Current ±50mA typical

(Iq, no signal, no load)


Signal Connector Horizontal 16-pin 2-row header

0.050" pin pitch


Mating assembly Samtec FFSD-08-D-XX.XX-01-N

(XX.XX = length in inches)

Channel Map

Signal Connector

Side View

Pin	Function	Pin	Function
1	Temperature	2	Ground
3	X-	4	Ground
5	X+	6	Ground
7	-VA	8	Ground
9	+VA	10	Ground
11	Υ-	12	Ground
13	Y+	14	Ground
15	+Bias	16	Ground

AB424T-ARRAY144P

Row and Column Encoder Weights

Row# or Col#	Row# or Col#	Fraction	Fraction	% Error	Notes
(for X- or Y-)	(for X+ or Y+)	(ideal)	(actual)		Notes
1	12	0.0833	0.0833	0.00 %	
2	11	0.1667	0.1650	-1.02 %	
3	10	0.2500	0.2483	-0.68 %	
4	9	0.3333	0.3311	-0.66 %	
5	8	0.4167	0.4167	0.00 %	Sum of X- and X+ fractions
6	7	0.5000	0.5000	0.00 %	or Y- and Y+ fractions
7	6	0.5833	0.5882	0.84 %	= 1.0833
8	5	0.6667	0.6637	-0.45 %	Independent of signal position
9	4	0.7500	0.7500	0.00 %	
10	3	0.8333	0.8333	0.00 %	
11	2	0.9167	0.9091	-0.83 %	
12	1	1.0000	1.0000	0.00 %	

Note: Errors exclude component tolerances

Output Signals

X- = (SiPM signal) * (encoder gain) * (X- fraction)

X+ = (SiPM signal) * (encoder gain) * (X+ fraction)

Y- = (SiPM signal) * (encoder gain) * (Y- fraction)

Y+ = (SiPM signal) * (encoder gain) * (Y+ fraction)

Typical event position calculation:

X column = (X + - X -) / (X + X -)

Y row = (Y+ - Y-) / (Y+ + Y-)

Example

SiPM signal at column 4, row 3 (excluding encoder gain)

X- = (Column 4 signal) * 0.3311

X+ = (Column 4 signal) * 0.7500

Y- = (Row 3 signal) * 0.2483

Y+ = (Row 3 signal) * 0.8333

Row and Column Readout Specifications

Position Signal Outputs

Encoding Charge division multiplexed to

12 rows and 12 columns

Gain 750Ω transimpedance gain

Output voltage $0 \rightarrow -1V$ into 100Ω

Output impedance 100Ω

Output current 50mA maximum

Temperature Sensor

Output voltage 500mV + 10mV per °C

Output current 10mAOutput impedance 100Ω Accuracy $\pm 0.5^{\circ}C$

Bias Voltage +29V typical (refer to SiPM data)

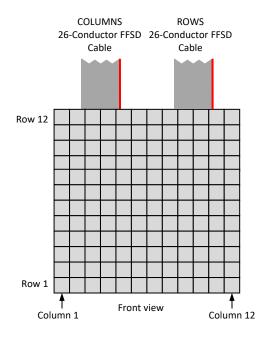
Voltage clamp 47V Zener diode

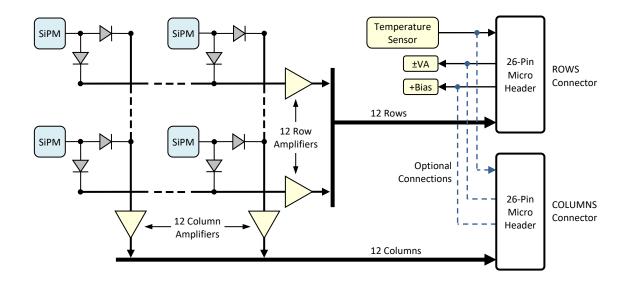
500mW maximum

Amplifier Voltage (\pm VA) \pm 2.8V \rightarrow \pm 5.5V DC maximum

Current ±50mA typical at ±5.0V

(Iq, no signal, no load)

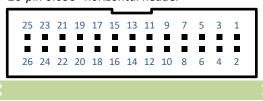

Signal Connectors Horizontal 26-pin 2-row header


with 0.050" pin pitch

Mating assembly Samtec FFSD-13-D-XX.XX-01-N

(XX.XX = length in inches)

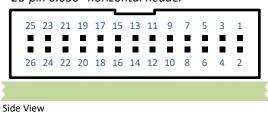
Channel Map



Row and Column Signal Connectors

ROWS

26-pin 0.050" horizontal header

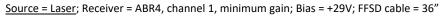


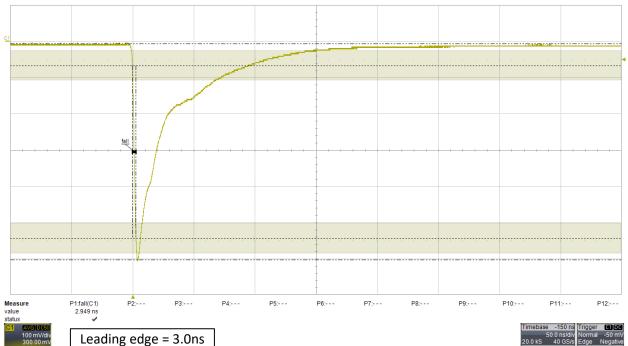
Side View

Pin	Function	Pin	Function
1	Row 1	2	Temperature
3	Row 2	4	Ground
5	Row 3	6	Ground
7	Row 4	8	Ground
9	Row 5	10	Ground
11	Row 6	12	-VA
13	Row 7	14	Ground
15	Row 8	16	+VA
17	Row 9	18	Ground
19	Row 10	20	Ground
21	Row 11	22	Ground
23	Row 12	24	Ground
25	+Bias	26	Ground

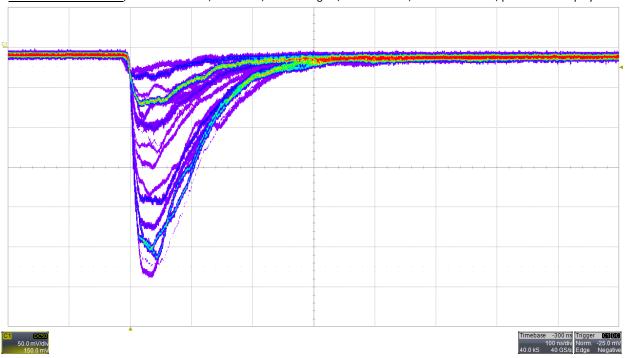
COLUMNS

26-pin 0.050" horizontal header

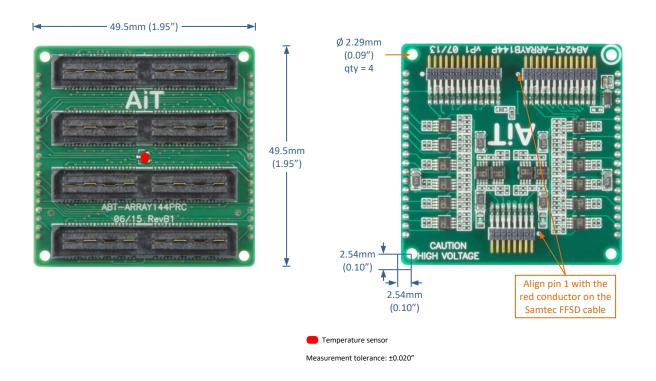

Pin	Function	Pin	Function
1	Column 1	2	Temperature
3	Column 2	4	Ground
5	Column 3	6	Ground
7	Column 4	8	Ground
9	Column 5	10	Ground
11	Column 6	12	*NC (-VA)
13	Column 7	14	Ground
15	Column 8	16	*NC (+VA)
17	Column 9	18	Ground
19	Column 10	20	Ground
21	Column 11	22	Ground
23	Column 12	24	Ground
25	*NC (+Bias)	26	Ground


NOTE

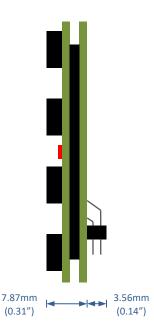

+Bias, +VA, -VA are normally connected to the ROWS connector. These signals are not connected to the COLUMNS connector. Disconnected signals are indicated as "NC". These signals can be optionally connected to the COLUMNS connector as an assembly variant.

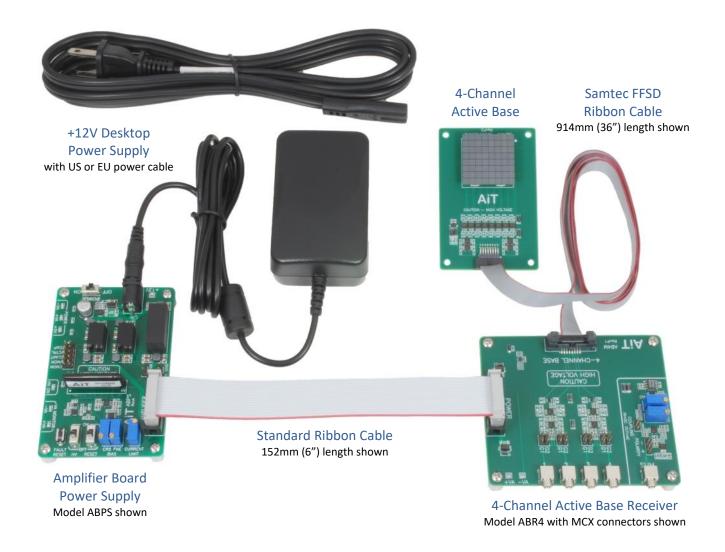

Typical Signals

4-Channel Readout



Mechanical


Front View Back View


Side View, Base Attached to Array

Array-144P Base 18.1mm (0.725") 3.56mm (0.14")

Side View, Base Only

4-Channel Active Base Readout Kit

Components

Each component is available separately. Refer to each datasheet for details.

The Active Base includes a 914mm (36") Samtec FFSD micro-pitch ribbon cable.

The Amplifier Board Power Supply includes a 12V desktop power supply and a HV80 bias voltage power supply.

The 4-channel Active Base Receiver includes a 152mm (6") power supply ribbon cable and a breakout board to connect any external power supply.

Safety Information

WARNING – High Voltage

- High voltage may be present during operation
- High voltage stored on capacitors may be present after power is removed
- Improper handling may result in personnel injury or equipment damage

This high-voltage device must be used only by personnel trained and qualified in safe handling, installation, and operation of high-voltage equipment.

CAUTION – Electrostatic Discharge (ESD) Sensitivity

The circuit board can be damaged by electrostatic discharge. Observe precautions for handling electrostatic sensitive devices. Handle only at static-safe workstations.

High-Gain Photodetectors

High-gain photodetectors such as silicon photomultipliers may conduct damaging currents if exposed to high optical signal levels while the bias voltage is applied, or if the bias voltage exceeds the recommended operating range. These devices must be operated only in low-light conditions, and only within the manufacturer's recommended bias voltage range.

Handling and Disassembly

This product may be provided with a protective enclosure. Disassembled enclosure components and circuit boards may contain sharp edges. Take appropriate safety precautions while assembling or disassembling the enclosure and handling disassembled components.

Indoor Use Only

Do not operate this product in a wet or damp environment. Do not operate in an explosive atmosphere.

Use of this product, and AiT Instruments' liability related to use of this product, is further governed by AiT Instruments' standard terms and conditions of sale, which were provided upon purchase of this product.